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ABSTRACT

A novel multiscale postprocessor for ensemble streamflow prediction, MS-EnsPost, is described and

comparatively evaluated with the existing postprocessor in the National Weather Service’s Hydrologic

Ensemble Forecast Service, EnsPost. MS-EnsPost uses data-driven correction of magnitude-dependent

bias in simulated flow, multiscale regression using observed and simulated flows over a range of temporal

aggregation scales, and ensemble generation using parsimonious error modeling. For comparative evalu-

ation, 139 basins in eight River Forecast Centers in the United States were used. Streamflow predictability

in different hydroclimatological regions is assessed and characterized, and gains by MS-EnsPost over

EnsPost are attributed. The ensemble mean and ensemble prediction results indicate that, compared to

EnsPost, MS-EnsPost reduces the root-mean-square error and mean continuous ranked probability score

of day-1 to day-7 predictions of mean daily flow by 5%–68% and by 2%–62%, respectively. The deter-

ministic and probabilistic results indicate that for most basins the improvement by MS-EnsPost is due to

both magnitude-dependent bias correction and full utilization of hydrologic memory through multiscale

regression. Comparison of the continuous ranked probability skill score results with hydroclimatic indices

indicates that the skill of ensemble streamflow prediction with post processing is modulated largely by the

fraction of precipitation as snowfall and, for non-snow-driven basins, mean annual precipitation.

1. Introduction

Streamflow simulations from hydrologic models con-

tain errors propagated from uncertain forcings, model

initial conditions, parameters and structures, and human

control of storage and movement of water (Ajami et al.

2007; Doherty and Welter 2010; Gupta et al. 2012;

Krzysztofowicz 1999; Montanari and Brath 2004; NRC

2006; Renard et al. 2010; Schaake et al. 2007b; Seo et al.

2006; Wood and Schaake 2008). For risk-based man-

agement of water resources and water-related hazards,

it is necessary to quantify the uncertainties arising from

these sources (Borgomeo et al. 2014; Butts et al. 2004;

Georgakakos et al. 2004; Hall and Borgomeo 2013;

Hall et al. 2020). Ensemble forecasting has emerged in

recent years as the methodology of choice for mod-

eling and communicating forecast uncertainty (Cloke

and Pappenberger 2009; Demargne et al. 2014; Demeritt

et al. 2010; NRC 2006; Schaake et al. 2007b). In the

United States, the National Weather Service (NWS)

has recently implemented the Hydrologic Ensemble

Forecast Service (HEFS; Demargne et al. 2014) at all

River Forecast Centers (RFC) (Lee et al. 2018) following

experimental operation at selectedRFCs (Hartman et al.

2015; Kim et al. 2018; Wells 2017). To reduce biases in

precipitation and temperature forecasts, the HEFS

uses the Meteorological Ensemble Forecast Processor

(MEFP; Schaake et al. 2007a; Wu et al. 2011; NWS

2017a). To reduce and quantify hydrologic uncertainty in

streamflow prediction, the HEFS employs the ensemble
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postprocessor, EnsPost (Seo et al. 2006; NWS 2017b).

In the HEFS, each MEFP-processed forcing ensemble

member is input to the chain of hydrologic models in

the Community Hydrologic Prediction System (CHPS;

Gijsbers et al. 2009; Roe et al. 2010). The resulting

ensemble trace of ‘‘raw’’ streamflow forecast may be

input to the ensemble postprocessor to produce an en-

semble member of postprocessed streamflow forecast.

The descriptor ‘‘post’’ arises from the fact that post

processing of streamflow ensemble forecast occurs after

the generation of raw ensemble streamflow forecast.

EnsPost was developed originally for short-range

forecasting of natural flows in headwater basins and

models predictive hydrologic uncertainty using a com-

bination of probability matching (PM; Hashino et al.

2002; Madadgar et al. 2014) and autoregressive (AR)-1

model with an exogenous variable, or ARX (1,1) (Bennett

et al. 2014; Damon and Guillas 2002), in bivariate normal

space (Krzysztofowicz 1999; Seo et al. 2006). EnsPost ap-

plies PM andARX(1,1) at a daily scale only. In reality, the

characteristic time scales of error in model-simulated flow

may span a range of scales, depending on the residence

time of the hydrologic processes involved and the error

characteristics of the forcings and the hydrologic models

used (Blöschl and Sivapalan 1995). In addition, if the flow

is strongly regulated, the errors may be reducible only

over a certain range of temporal scales of aggregation

due to the altered residence time and storage-outflow

relationships. The postprocessing approach used in this

work reflects the multiscale nature of the hydrologic

and atmospheric processes (Blöschl and Sivapalan 1995;

Carlu et al. 2019;Kumar 2011), and of hydrologicmodeling

and prediction, including parameter estimation (Mizukami

et al. 2017), parameter regionalization (Samaniego et al.

2010), model evaluation (Rakovec et al. 2016), and data

assimilation (Li et al. 2015).

The positive impact of postprocessing raw model

simulations of streamflow in ensemble streamflow

forecasting has been widely reported (Kim et al. 2018,

2016; Madadgar et al. 2014). Recently, it has also

been shown that EnsPost significantly increases skill

in ensemble forecasts of outflow from a water supply

reservoir in North Texas during significant releases,

in addition to that in ensemble inflow forecasts (Limon

2019). With increasing acceptance and adoption of en-

semble streamflow forecasting by the operational com-

munity, developing more potent postprocessing methods

has been a very active area of research. To that end, a

number of comparison studies have recently been carried

out. For postprocessing of meteorological forecast, Wilks

(2006) compared direct model output (Wilks 2006),

rank histogram recalibration (Hamill and Colucci

1998), single-integration Model Output Statistics (MOS;

Erickson 1996), ensemble dressing (Roulston and Smith

2003), logistic regression (Hamill et al. 2004), non-

homogeneous Gaussian regression (Gneiting et al. 2005),

forecast assimilation (Stephenson et al. 2005), andBayesian

model averaging (Raftery et al. 2005). He concluded that

logistic regression (Duan et al. 2007; Hamill et al. 2004),

ensemble MOS (Gneiting et al. 2005), and ensemble

dressing outperform the others. For postprocessing of

hydrologic forecast, Boucher et al. (2015) compared the

regression and dressing methods using synthetic data.

They concluded that the techniques have similar overall

performance, and that the regression and dressing

methods perform better in terms of resolution and

reliability, respectively. Mendoza et al. (2016) used

medium-range ensemble streamflow forecasts from

the System for Hydrometeorological Applications,

Research and Prediction, and compared quantile map-

ping (Mendoza et al. 2016; Hashino et al. 2006; Piani

et al. 2010; Regonda and Seo 2008; Wood and Schaake

2008; Zhu and Luo 2015), logistic regression, quantile

regression (Bjørnar Bremnes 2004; Bogner et al. 2016;

Coccia and Todini 2011; Koenker and Bassett 1978) and

the general linear model postprocessor (GLMPP; Zhao

et al. 2011). They found that no single method per-

formed best in all situations, and that the post processors’

performance depended on factors such as soil type

and land use and hydroclimatic conditions of the ba-

sin. Ye et al. (2015) developed canonical events-based

GLMPP for postprocessing of streamflow during dry

season. Li et al. (2016) developed and evaluated for

short-term streamflow forecasting a new method for

error modeling where a sequence of simple error models,

instead of a single complex model, is run through differ-

ent stages. Recently, Li et al. (2017) and Vannitsem et al.

(2018) carried out comprehensive reviews on the appli-

cation of different postprocessing techniques.

In this paper, we introduce a new multiscale post-

processor for ensemble streamflow prediction for short

to long ranges. By short and long ranges, we mean up to

several days and at least 1 month ahead, respectively.

The proposed technique, referred to herein asMS-EnsPost,

is designed to reduce magnitude-dependent biases in

raw model-simulated flow, and utilize all available skill

that may exist over a range of temporal scales of ag-

gregation in simulated and observed flows. We then

comparatively evaluate MS-EnsPost with EnsPost for

139 basins in the services areas of eight RFCs in the

continental United States (CONUS). As part of the

evaluation, we also address the following research

questions:

d Howdoes the prediction skill, asmeasuredbyMS-EnsPost

in reference to climatology, compare among the
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different RFCs, and among different basins within

an RFC?
d How does the above skill relate to the hydroclimatol-

ogy of the basin?
d How does MS-EnsPost perform relative to EnsPost

in reducing systematic errors and initial condition

uncertainties?

This paper is organized as follows. Section 2 de-

scribes the study basins and data used. Section 3 de-

scribes the methods used. Section 4 presents the results.

Section 5 provides the conclusions and future research

recommendations.

2. Study basins and data used

A total of 139 basins, comprising 11, 13, 7, 19, 13, 28,

42, and 6 in the service areas of the Colorado Basin RFC

(CBRFC), California Nevada RFC (CNRFC), Middle

AtlanticRFC (MARFC),Missouri BasinRFC (MBRFC),

NorthCentral RFC (NCRFC), Northeast RFC (NERFC),

NorthwestRFC(NWRFC),andWestGulfRFC(WGRFC),

respectively, are used (see Fig. 1). The CBRFC, CNRFC,

MARFC, and WGRFC basins were used in previous

studies of EnsPost (Regonda and Seo 2008; Seo et al. 2006).

The other basins were selected by the respective RFCs

toward improved ensemble service. The basin areas range

from 91 to 30700km2 with 48, 41, and 50 basins under 500,

between 500 and 1000, and over 1000km2, respectively.

The basins cover a wide range of hydroclimatology as may

be seen inmean annual precipitation, the aridity index, and

the fraction of precipitation as snowfall (see Fig. 1). The

aridity index u is defined as (Budyko et al. 1974):

u5
E

P
, (1)

where E and P denote the mean potential evapora-

tion and precipitation (mmday21), respectively. Semiarid

arid basins have 2 , u , 3 and 3 , u , 7, respectively

(Sankarasubramanian and Vogel 2003). The fraction of

precipitation as snowfall fs is defined as

f
s
5

P[T, 08C]

P
, (2)

where T denotes the surface air temperature (8C) and
P[ ] denotes the mean of precipitation for which the

event bracketed holds true. Basins with fs . 0.4 are

considered snow-dominated and tend to be located at

higher elevations (Knowles et al. 2006). In general,

a semiarid or arid basin has smaller predictability of

streamflow than a humid basin, and a snowfall-driven

basin has larger predictability than a rainfall-driven

basin (Berghuijs et al. 2014; Berghuijs andWoods 2016).

The data used for this study are mean daily observed

and simulated streamflow. The historical observedmean

daily streamflow, referred to as QME in the NWS, is

obtained from the U.S. Geological Survey. The focus of

this work is on reducing and quantifying hydrologic

uncertainty. As such, the model output of interest is the

simulated streamflow, which reflects hydrologic uncer-

tainty only, rather than the streamflow forecast, which

reflects both meteorological and hydrologic uncertainties

(Krzysztofowicz 1999; Seo et al. 2006). The simulated

mean daily flow, or SQME, is derived from the simulated

instantaneous flow, or SQIN, generated at a 6-h interval

using the operational hydrologic models, and the observed

forcings of mean areal precipitation, temperature, and

potential evapotranspiration. For the remainder of this

paper, by daily flow, we mean mean daily flow. The hy-

drologic models used are the Sacramento (SAC; Burnash

et al. 1973) for soil moisture accounting, unit hydrograph

(Chowet al. 1988) for surface runoff routing, and SNOW-17

(Anderson 1973) for snow ablation. The MARFC uses

the continuous antecedent precipitation index model

(API-CONT; Fedora andBeschta 1989; Sittner et al. 1969)

instead of SAC. The SQIN time series were produced by

the respective RFCs using the Community Hydrologic

Prediction System (CHPS;Gijsbers et al. 2009; Roe et al.

2010) based on the RFCs’ historical forcings and cali-

brated model parameters. The CHPS is the main oper-

ational forecasting system at the RFCs, and uses the

single (RES-SNGL) and joint (RES-J) reservoir regu-

lation models, and the SSARR reservoir regulation

(SSARRESV) model for simulation of reservoir oper-

ations (Adams 2016; NWS 2008a,b). Reservoir models

were included in the hydrologic modeling of 20 of the

139 locations used in this work. There are about 14 ad-

ditional locations impacted by reservoir regulations that

are not modeled. Limon (2019) has shown that, for a

water supply reservoir in North Texas, the magnitude of

reservoir modeling uncertainty may be comparable to

that of all other hydrologic uncertainties combined, and

may even approach that of the meteorological uncer-

tainty.As such, flow regulations present a large additional

challenge to streamflow postprocessing. Experience thus

far indicates that at least 20 years’ worth of data is necessary

for estimation of the EnsPost parameters (NWS 2017b).

The period of record used in this work common to both

QME and SQME time series ranged from 12 to 66 years,

and exceeded 30 years for over 90% of the basins.

3. Methods used

MS-EnsPost consists of three elements: bias correc-

tion, multiscale regression, and ensemble generation.

Figure 2 provides a schematic of the data flow and the
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associated processes. In this section, we describe the

above elements and how MS-EnsPost is evaluated.

a. Bias correction

We define within some time period of interest the

multiplicative bias bi in the simulated flow valid at the

ith day qs
i as

b
i
5

qo
i

qs
i

, (3)

where qo
i denotes the observed flow valid at the ith day.

Model-simulated high and low flows generally have

different multiplicative biases. Hydrologic models tend

to simulate the physical processes that govern high flows

relatively more accurately (Dunne and Black 1970;

Engman and Rogowski 1974; Freeze 1972; Horton 1933;

Loague and VanderKwaak 2004). In addition, most

hydrologic models, Continuous API being a prime ex-

ample, are calibrated to perform better for high flows

than for low flows (Fowler et al. 2018; Freer et al. 1996;

Gan et al. 1997; Kim et al. 2007; Krause et al. 2005;

Legates and McCabe 1999; Nash and Sutcliffe 1970;

Smith et al. 2014). The bias correction procedure in

MS-EnsPost is designed to address this dependence.

Sample estimates of bi at a daily scale are very noisy

due to very large variabilities in qo
i and qs

i . To obtain

stable estimates of the magnitude-dependent bias, the

proposed procedure first pairs qo
i and qs

i , jointly sorts

them in the ascending order of qs
i , and aggregates the

resulting daily flows over different time scales. The

temporal aggregation and the attendant noise cancel-

lation greatly reduce the sampling uncertainty in the

estimated bias, compared to that without aggregation.

The time-aggregated flows are expressed as

aok,(j) 5 �
jkLk

i5(jk21)Lk11

qo
(i) , (4)

ask,(j) 5 �
jkLk

i5(jk21)Lk11

qs
(i) . (5)

In the above, the symbol (i) signifies that the variable

subscripted is sorted in the ascending order of qs
i , Lk de-

notes the kth time scale of aggregation, and jk denotes the

jth aggregationwindowof the kth scalewithin the period of

record, and aok,( j) and ask,( j) denote the sorted observed and

simulated flows aggregated over the jth timewindow of the

kth time scale, respectively, where the symbol (j) signifies

that the aggregation is based on the sorted daily flow.

Equations (4) and (5) pool the simulated and observed

flows such that, when averaged over the respective aggre-

gation periods, the aggregated simulated flows are similar

in magnitude to the conditioning flow qs
i in Eq. (3). The

bias for qs
i at the kth aggregation scale bk,i is given by

b
k,i
5

aok,( j)

as
k,( j)

, i 2 [( j
k
2 1)L

k
1 1, j

k
L

k
]. (6)

In the above, the range for the index i, which is associ-

ated with the simulated flow to be bias-corrected qs
i

identifies the time scale of aggregation associated with

the bias being estimated. In this work, we used Lk 5
2k (days), k5 1, . . . , 14, for the aggregation scales, but

other choices are possible. In the above, the largest ag-

gregation scale is almost 45 years long with which one

would be applying a singlemultiplicative bias estimate for

all simulated daily flows regardless of their magnitude.

Among the total of K different temporal scales of

aggregation, the best-performing scale is identified via

leave-one-year-out (or similar) cross validation using a

period of record of N years as described below. First,

the magnitude-dependent biases are estimated at the K

different scales of aggregation using an (N 2 1)-yr

period of observed flow andmatchingmodel simulation.

The resulting biases are applied to the simulated daily

flow valid on each Julian day of the withheld year.

FIG. 1. Maps of 139 study basins, showing (a) the aridity index, (b) the fraction of precipitation as snowfall, and (c) mean annual

precipitation.
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The procedure then identifies the aggregation scale that

produces the smallest RMSE over the year in the bias-

corrected simulated daily flow by comparing with the

verifying observed flow. Once completed for allN years,

the leave-one-year-out cross validation produces a total

of N different sets of magnitude-dependent biases for

simulated daily flow. For a given qs
i , the procedure then

arithmetically averages theN different biases associated

with the respective time windows that enclose the par-

ticular value of qs
i in the sorted series. The procedure

repeats the above steps for all possible values of qs
i , from

which the final single relationship between the simulated

flow and the magnitude-dependent bias results. Figure 3

shows the schematic of the magnitude-dependent bias

estimation procedure. Alizadeh (2019) provides examples

of the resulting relationship of the multiplicative bias ver-

sus the magnitude of simulated daily flow.

b. Multiscale regression

Postprocessing generally seeks predictions at the

highest possible temporal resolution. High dimensional

stochastic modeling necessary for such predictions,

however, is a large challenge due to the complexity in-

volved and large data requirements. In the multiscale

regression approach used in this work, we solve instead a

large number of very low-dimensional statistical mod-

eling problems. Figure 4 illustrates the basic idea behind

the approach in the context of predicting LM day-ahead

observed daily flow using themodel-simulated daily flow

valid over the LM day-long prediction horizon, and the

observed daily flow LM 2 1 days into the past where M

refers to the index for the largest aggregation scale. In

this approach, rather than predicting qo
i , i5 1, . . . , LM,

using qs
i , i5 1, . . . , LM, and qo

i , i52(LM 2 1), . . . , 0,

we predict aok,1 5�Lk

i51q
o
i using abk,1 5�Lk

i51q
b
i and aok,0 5

�0

i52(Lk21)q
o
i for all time scalesof aggregation,k5 1, . . . ,M,

where qb
i denotes the bias-corrected model-simulated

daily flow bk,iq
s
i [see Eqs. (3) and (6)] and the subscripts

0 and 1 signify the current and one-step-ahead time

intervals of the kth time scale, respectively. We then

disaggregate the predicted multidaily flow to daily

flow using the granular patterns of daily flow in the

FIG. 2. Schematic of MS-EnsPost elements and dataflow.
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bias-corrected model-simulated daily flow. The above

approach is motivated by the fact that the larger the

temporal scale of aggregation is, the more skillful abk,1 is

likely to be (Kim et al. 2018; Limon 2019). Similar ap-

proaches have also been used in postprocessing fore-

casts of precipitation (Kim et al. 2018; Schaake et al.

2007a) and streamflow (Regonda and Seo 2008). In this

work, the prediction horizon used, LM, is 32 days, and

the aggregation scales used are 1, 2, 4, 8, 16, and 32days

(see Fig. 4). Depending on the application and the pat-

tern of time-scale-dependent predictability, however,

one may choose a different set of scales.

To predict the observed flow at the kth scale, we use

the following linear model for the predicted, time-

aggregated observed flow at the kth time scale, apk,1,

where the subscript 1 signifies that the prediction is for a

single time step ahead at the kth time scale:

apk,1 5-
k
aok,0 1 (12-

k
)abk,1, k5 1, . . . ,M . (7)

In the above, -k denotes the optimal weight for the

time-aggregated observed flow at the kth scale aok,0,

where the subscript 0 signifies that aok,0 is valid at the

current time step at the kth time scale. Asmay be seen in

Eq. (7), one may consider multiscale regression a form of

statistical fusion of observed streamflow with simulated

flowover a range of time scales of aggregation. Significant

improvement by multiscale regression is an indication

that large uncertainties exist in the initial condition of the

hydrologic models, or significant hydrologic memory ex-

ists in the surface and soil water storages of the basin. The

optimal weight-k in Eq. (7) may be obtained via optimal

linear (i.e., maximum likelihood) estimation (Deutsch

1965; Schweppe 1973; Gelb 1974) as

[-
k
(12-

k
)]5 [UTR21U]21UTR21 . (8)

In the above, U denotes the (2 3 1) unit vector, and R

denotes the error covariance matrix:

R5

2
64 Var(aok,0 2 aok,1) Cov(aok,0 2 aok,1, a

b
k,1 2 aok,1)

Cov(aok,0 2 aok,1, a
b
k,1 2 aok,1) Var(abk,1 2 aok,1)

3
75. (9)

The predicted daily flow for the ith day from the

multiscale regression at the kth time scale qp
k,i may be

obtained by disaggregating apk,1, k5 1, . . . , M, ac-

cording to

FIG. 3. Schematic of the magnitude-dependent bias correction procedure.
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qp
k,i 5

qb
i

abk,1
apk,1 5

apk,1
abk,1

qb
i . (10)

Equation (10) amounts to adjusting the bias-corrected

model-simulated daily flow qb
i based on howmuch larger

or smaller the predicted time-aggregated flow is rela-

tive to the time-aggregated bias-corrected flow, that is,

apk,1/a
b
k,1. Once the disaggregation process is complete

for all time scales of aggregation, the final prediction of

observed daily flow, qp
i , i5 1, . . . , LM, is constructed

from qp
k,i, k5 1, . . . , M, by choosing for each day i in the

prediction horizon i5 1, . . . ,Lk, the predicted daily flow

qp
k,i associated with the smallest k, that is, the smallest

time scale of aggregation. In this way, if there are mul-

tiple predictions with overlapping prediction horizons,

the procedure selects the one associated with the

shortest lead time. Figure 4 shows the resulting time

scales of aggregation over the prediction horizon of

32 days. Albeit heuristic, the above selection rule is

based on the reasonable assumption that, the shorter

the lead time is, the more skillful qp
k,i is. If the period

of record is too short relative to the largest time scale

of aggregation, the estimation of the error covariance

terms in Eq. (9) may not be possible due to small

sample size. In such a case, the largest time scale may

have to be reduced or dropped.

c. Error modeling and ensemble generation

The last element of MS-EnsPost models the error in

the above prediction and its temporal structure for

ensemble generation. This element models the time-

correlated errors in qp
i , i5 1, . . . , LM from multiscale

regression. We define the error «i in the predicted daily

flow qp
i valid for the ith day in the prediction horizon as

«
i
5 qo

i 2 qp
i , «

i
$2qp

i , (11)

where qo
i denotes the verifying observed daily flow. In

EnsPost, qo
i and qp

i are normal quantile-transformed

(NQT) empirically (Krzysztofowicz and Kelly 2000;

Krzysztofowicz and Herr 2001), which renders «i normal

in the transformed space (Seo et al. 2006). InMS-EnsPost,

qo
i and qp

i are Box–Cox-transformed (Box and Cox 1964)

to avoid data-intensive empirical distribution modeling

while rendering the error in the transformed space ~«i ap-

proximately normal and homoscedastic with respect to qp
i :

~«
i
5 ~qo

i 2 ~qp
i 5

(qo
i )

l 2 1

l
2
(qp

i )
l
2 1

l
5
(qo

i )
l 2 (qp

i )
l

l
,

~«
i
$2(qp

i )
l
/l . (12)

In the above, l denotes the Box–Cox parameter, and ~qo
i

and ~qp
i denote the transformed observed and predicted

daily flows, respectively. The parameter l is chosen such

that the probability density function (PDF) of ~«i for

any i, or ~«, conditional on f~«$ qpg, or f1(~«j~«$qp), may

be approximated with truncated normal distribution

(Robert 1995):

f
1
(~«j~«$qp)5N(m

~«
,s2

~«: q
p), (13)

where m~« and s2
~« denote the mean and variance of the

untruncated distribution, respectively, and qp denotes

the conditioning predicted flow in the truncated distri-

bution. The unknown statisticsm~« and s2
~« may be solved

for by equating the sample mean m~« and variance s2~« of

actual realizations of ~« with the mean and variance of

modeled ~« as shown below:

m
~«
5

ð‘
0

E[~«j~« $2(qp)l/l]f
2
(qp) dqp , (14)

s2~« 5

ð‘
0

E[~«2j~«$2(qp)l/l] f
2
(qp) dqp 2m2

~« , (15)

where E[] denotes expectation, and f2 denotes the PDF

of qp. The expectations in Eqs. (14) and (15) may

be expressed in terms of m~«, s
2
~«, and a as follows

(Greene 2003):

E[~«j~«$2(qp)l/l]5m
~«
1s

~«

f(a)

12F(a)
, (16)

E[~«2j~«$2(qp)l/l]5m2
~« 1s2

~«

�
12

f(a)

12F(a)

3

�
f(a)

12F(a)
2a

��
, (17)

where f() and F() denote the standard normal PDF

and cumulative distribution function (CDF), respec-

tively, and the standardized lower bound a is given

by a5 [2(qp)l/l2m~«]/s~«. Using Eqs. (14)–(17) and

the empirical distribution of qp, one may solve for m~« and

FIG. 4. Schematic of multiscale regression.
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s2
~« numerically. Once m~« and s2

~« are estimated, an

ensemble realization of ~« conditioned on qp
i , or ~«i(v),

may be generated by inverting the standard normal

CDF (Robert 1995):

~«
i
(v)5m

~«
1s

~«
F21fF(zli)1U(v)[12F(zli)]g . (18)

In the above, U(v) denotes the sample realization of

the [0,1] uniform random variable, the bracketed term

representsFf[~«i(v)2m~«]/s~«g and the normalized lower

bound of ~«i, or z
l
i, is given by zli 5 [2(qp

i )
l
/l2m~«]/s~«.

An ensemble trace of the postprocessed daily flow

qo
i (v) may then be obtained from

qo
i (v)5 qp

i 1 «
i
(v)5 [(qp

i )
l
1 l~«

i
(v)]

1/l
,

~«
i
(v)$2(qp

i )
l
/l , (19)

where qo
i (v) and «i(v) denote the ensemble realizations

of qo
i and «i, respectively.

The error modeling as described above requires esti-

mation of l,m~«, and s2
~« that render the distribution of ~«,

approximately truncated normal given ~qp [see Eq. (12)].

In addition, Eq. (13) assumes that ~« is approximately

homoscedastic with respect to ~qp except near the origin

where the lower bound strongly suppresses variability.

In reality, the above assumptions may not be met for all

basins. In addition, there may not be enough data points

over the tail ends of ~qp to test the conditional truncated

normality or homoscedasticity. In this work, we check

the reasonableness of the above assumptions by ex-

amining for each basin the sample moments, normal

quantile plots, histograms, and scatterplots of ~«i versus
~qp
i . For those basins showing significant departures from

truncated normality or homoscedasticity, we adjusted

l and/or s2
~« until the results passed the visual test. To

improve the objectivity of the error modeling proce-

dure, additional research is necessary. In this study, we

only considered truncated normal for the conditional

PDF of ~«. Other distributions, such as truncated gamma

(Chapman 1956), are also possible.

To capture the distributional characteristics of multi-

daily flow, it is necessary to model the temporal depen-

dence of ~«i. Due to the large number of basins involved,

basin-specific modeling of error time series (Box and

Jenkins 1976) was beyond the scope of this study. Instead,

we modeled the error, ~«i 5 ~qo
i 2 ~qb

i , with AR(1) as a first-

order approximation for all basins. The use of ~qb
i rather

than ~qp
i in the above is motivated by the fact that ~qb

i is not

FIG. 5. (a) RMSE of the raw, bias-corrected, MS-EnsPost ensemble mean and EnsPost ensemble mean pre-

dictions for lead times of 1–7 days and 1 month for the basins in the CBRFC’s service area (yellow dots indicate

basins with reservoir model included).
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lead-time dependent, and hence greatly simplifies the

modeling. The impact of this simplification appears

acceptably small for all but a small number of MBRFC

basins (see section 4b). To assess the adequacy of AR(1),

we carried out structure identification for a small

number of basins in the MARFC, NCRFC, NERFC,

and NWRFCs’ service areas. The results indicate that

the error structures are generally more complex than

AR(1), and contain both autoregressive and moving-

average components of higher order. This is not very

surprising given the very widely varying hydroclimatology

of the basins and goodness of the hydrologic modeling.

The simplifying choice of AR(1) in this work is addi-

tionally motivated by its use in EnsPost which facilitates

direct comparison between MS-EnsPost and EnsPost.

Though limited in sample size, the above findings sug-

gest that additional improvement in ensemble predic-

tion of multidaily flow may be possible with improved

modeling of temporal dependence of prediction error.

d. Evaluation

For comparative evaluation of MS-EnsPost, we car-

ried out both single-valued and ensemble verification of

MS-EnsPost via leave-two-years-out cross validation

using the EnsembleVerification System (EVS; Brown et

al. 2010). The leave-one-year-out cross validation results

are similar. In single-valued verification, we evaluate the

raw and bias-corrected predictions, and ensemble

mean predictions from postprocessing with EnsPost

and MS-EnsPost. In ensemble verification, we evaluate

the ensemble predictions from EnsPost andMS-EnsPost,

and assess their skill in reference to sample climatol-

ogy of historical observed flow. In both, we consider

predictions of daily flow with lead times of 1–32 days,

and of monthly flow with a lead time of one month.

For single-valued predictions, we use root-mean-square

error (RMSE) as the primary measure of performance:

RMSE(k)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n(k)
�
n(k)

i51

[qp
i (k)2 qo

i (k)]
2

s
, (20)

where qp
i (k) denotes the ith day-k prediction of daily

flow; qo
i (k) denotes the verifying observed daily flow;

and n(k) denotes the total number of day-k daily flow

predictions. For ensemble predictions, we use the mean

continuous ranked probability score (CRPS), its decom-

position, and continuous ranked probability skill score

(CRPSS) as primarymeasures (Brown and Seo 2010;Kim

et al. 2018). The CRPS represents the integral squared

difference between the CDF of the predicted variable

FY(q) and that of the verifying observed variable FX(q)

(i.e., a step function):

FIG. 5b. As in (a), but for the MARFC basins.
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CRPS5

ð
[F

Y
(q)2F

X
(q)]2 dq . (21)

The mean CRPS (CRPS) is the average of the CRPS

values from the individual pairs of ensemble forecasts

and observations and reflects the overall quality of an

ensemble forecasting system (the smaller, the bet-

ter). In this work, mean CRPS is evaluated following

Hersbach (2000). The mean CRPS can be decom-

posed into mean reliability (REL), mean resolu-

tion (RES), and mean uncertainty (UNC), or into

mean REL and mean potential CRPS (CRPSPOT)

(Hersbach 2000):

CRPS5REL2RES1UNC5REL1CRPS
POT

.

(22)

Smaller REL indicates more reliable ensembles (de-

sirable) and larger RES means better resolution

(desirable). The RES component (5UNC2CRPSPOT)

is positive if the ensemble forecast is better than the

climatological ensemble forecast (Hersbach 2000). The

UNC component reflects climatological uncertainties

in the observations and does not relate to forecast

attributes. The CRPSPOT (5CRPS2REL) represents

theCRPS for a perfectly reliable forecast (Hersbach 2000).

The CRPSS measures this skill relative to climatology,

that is, historical traces of observed daily flow valid at

the same time of the year as the subject forecast:

CRPSS5
CRPS

clim
2CRPS

CRPS
clim

(23)

Perfect and skill-less ensemble forecasts have CRPSS

of unity and zero, respectively.

4. Results

This section presents the comparative evaluation re-

sults for single-valued and ensemble predictions, and

assesses the predictability of streamflow as measured

from the ensemble prediction results for different

hydroclimatological regions.

a. Single-valued streamflow prediction

Figure 5 shows the RMSE of the raw, bias-corrected,

MS-EnsPost ensemble mean, and EnsPost ensemble

mean streamflow predictions for lead times of 1–7days

and 1month for the basins in the CBRFC,MARFC, and

WGRFCs’ service areas. For similar plots for all other

RFCs, the reader is referred to Alizadeh (2019). The

above three RFCs are chosen to represent the regions of

FIG. 5c. As in (a), but for the WGRFC basins.
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the largest, medium, and the most limited predictability

among the groups of basins considered in this work.

In the figure, we connect the RMSE values for each

basin to help assess the relative performance among the

four different predictions for each basin. A reduction in

RMSE by the bias-corrected prediction over the raw

is an indication that significant magnitude-dependent

biases exist in the raw model-simulated flow due to

parametric or structural errors in the hydrologic models,

biases in the forcings, or flow regulations. A reduction in

RMSE by the MS-EnsPost ensemble mean prediction

over the bias-corrected is due to multiscale regression,

and indicates that significant uncertainties exist in the

initial conditions of the hydrologic models, or significant

hydrologic memory exists in the surface and soil water

storages of the basin. Due to the temporal aggregation,

the monthly results (rightmost columns in Fig. 5) am-

plify the relative performance of the bias correction

components of MS-EnsPost and EnsPost. The monthly

results are hence more reflective of the bias correction

operation, which impacts over the entire forecast hori-

zon, than the multiscale regression operation, which

impacts over the range of hydrologic memory only. The

results for all 139 basins indicate that, MS-EnsPost re-

duces the RMSE of the raw model predictions of daily

flow by 5%–74% and when compared to the EnsPost

predictions, by 5%–68%, and that MS-EnsPost is

superior to EnsPost for 1-month-ahead streamflow

prediction for all basins examined in this work. Below

we summarize the main RMSE results for each of

the 3 RFCs. The results for the other RFCs and the

discussion may be found in Alizadeh (2019).

For CBRFC (Fig. 5a), the MS-EnsPost ensemble

mean prediction improves over the raw and EnsPost

ensemble mean predictions for all basins. The yellow

circles in the figure indicate that the basin has flow

regulations that are modeled with CHPS. In general,

both bias correction and multiscale regression con-

tributes to the improvement by MS-EnsPost. For a

number of basins, the reduction in RMSE due to mul-

tiscale regression persists to Day 4 and beyond, a re-

flection of the longer hydrologic memory present in the

Upper ColoradoRiver basin owing to the snowmelt. For

MARFC (Fig. 5b), bias correction generally contributes

more to the RMSE reduction by MS-EnsPost than

multiscale regression. In Fig. 5, the empty circles indi-

cate that the basin has unmodeled regulated flow. The

largest improvement by MS-EnsPost over EnsPost is

in the day-1 prediction for RTDP1 (third from the top)

which is downstream of RaystownDam on the Raystown

Branch of the Juniata River. Overall, the impact of

multiscale regression is rather modest and wears off

within the first two days of lead time, an indication

that the hydrologic memory in the Juniata River basin

in Pennsylvania is relatively short. For theWGRFC basins

(Fig. 5c), the improvement byMS-EnsPost over EnsPost is

particularly large. These basins are located in the semiarid

western part of the Upper Trinity River basin (Kim et al.

2018). As such, they have short memory in surface and soil

water storages, and their streams are ephemeral despite

relatively large basin size (441 ; 1764km2). Because

EnsPost does not model intermittency of streamflow, its

results are particularly poor for the WGRFC basins.

MS-EnsPost, on the other hand, is able to address inter-

mittency to a significant extent by aggregating flow which

reduces or removes zero flows at sufficiently large tem-

poral scales. Overall, the reduction in RMSE due to

multiscale regression is rather short-lived. Themonthly

results (rightmost panel in Fig. 5c) for JAKT2 and DCJT2

(second and fourth from the top, respectively) are unex-

pected in that multiscale regression inMS-EnsPost slightly

increased RMSE over magnitude-dependent bias correc-

tion alone. The above observation indicates that statistical

assimilation of observed streamflow up to a month in

aggregation scale does not add skill due to the weak

hydrologic memory in streamflow in these basins.

b. Ensemble streamflow prediction

In this section,we comparatively evaluate theMS-EnsPost

ensemble streamflow predictions with the EnsPost.

To facilitate comparison for a large number of basins,

we use ‘‘worm’’ plots in which the mean CRPS of the

MS-EnsPost predictions (y axis) versus the EnsPost

predictions (x axis) are dot-plotted and connected for

lead times of 1–7 days to form a worm for each basin.

Figure 6a shows the worm plots in log–log scale for all

study basins for each RFC. The lower and upper ends

of eachworm are associated with day-1 and -7 predictions

for that basin, respectively. If MS-EnsPost improves over

EnsPost for 7-day-ahead prediction, the worms would

stretch downward from the diagonal. The longer the

downward stretch is, the larger the improvement by

MS-EnsPost over EnsPost. If MS-EnsPost does not

improve over EnsPost, the worms would lie along the

diagonal. Figure 6b shows the mean CRPS scatterplots

of 1-month-ahead MS-EnsPost predictions of monthly

flow versus the EnsPost.

Figure 6a shows that, for most basins, MS-EnsPost

significantly improves over EnsPost. For most MARFC

basins, however, little improvement is seen. For some

MBRFC basin, MS-EnsPost performed worse than

EnsPost for day-1 and -2 predictions. For RTDP1 of

MARFC (the 3rd worm from the top), MS-EnsPost

clearly improves over EnsPost. Recall in the single-

valued prediction results that MS-EnsPost generally

showed significant improvement over EnsPost for regulated
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flows. The MBRFC results were unexpected in that

MS-EnsPost was clearly superior to EnsPost in en-

semble mean prediction. A closer examination indi-

cates that, for the four MBRFC basins, the EnsPost

ensemble predictions are superior to the MS-EnsPost

for the first one or two days of lead time. The above

result was traced to reduced reliability (Alizadeh 2019)

due to the use of the error statistics of ~qb
i rather than ~qp

i

for simplicity (see section 3c). The above suggests that

lead-time-dependent prescription of the error statistics

may be necessary for some basins. The positive impact

of bias correction may be seen in Fig. 6b for all MBRFC

basins; the 1-month-ahead MS-EnsPost predictions of

monthly flow are clearly superior to the EnsPost. Note

also in Fig. 6b that the improvement by MS-EnsPost

over EnsPost is larger for the smaller MBRFC basins.

This is due to the fact that bias correction, rather than

multiscale regression, is largely responsible for the

FIG. 6. (a) Worm plots (see text for explanation) of mean CRPS of ensemble predictions of daily flow fromMS-EnsPost and EnsPost for

lead times of 1–7 days.
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improvement by MS-EnsPost which produces a large

positive cumulative impact for prediction of monthly flow.

Overall, the CBRFC, NCRFC, and NWRFC basins

show particularly large improvement by MS-EnsPost

over EnsPost. For many CBRFC and NWRFC basins,

streamflow is fed by snowmelt, which increases hydro-

logic memory. The CBRFC and NWRFC results indi-

cate that multiscale regression in MS-EnsPost is able

to utilize effectively the predictability present in the

model-simulated and observed flows over a range of

temporal scales of aggregation. For the NCRFC basins,

on the other hand, the significant improvement by

MS-EnsPost is found to be due more to bias correc-

tion than multiscale regression (Alizadeh 2019). For

the NERFC basins, MS-EnsPost shows significantly

larger improvement over EnsPost for larger basins. For

the CNRFC basins, MS-EnsPost significantly improves

over EnsPost for some basins whereas MS-EnsPost and

EnsPost perform similarly for the others. The improve-

ment is found to be generally smaller for the coastal

FIG. 6b. As in (a), but for 1-month-ahead predictions of monthly flow.
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basins (Alizadeh 2019). For the WGRFC basins,

MS-EnsPost significantly improves over EnsPost. It in-

dicates that bias correction andmultiscale regression are

effective in addressing the flow-magnitude-dependent

biases in raw model-predicted flow and intermittency of

streamflow in the semiarid region.

Decomposition of the mean CRPS [Eq. (22); see

Alizadeh (2019) for examples] indicates that, for most

basins, the reduction in mean CRPS by MS-EnsPost

over EnsPost is due mostly to improved resolution,

rather than improved reliability. This is not very sur-

prising in that the EnsPost uses empirical probability-

matching based on NQT whereas MS-EnsPost relies

on approximate distribution modeling via the Box–Cox

transformation. If the historical record is long enough to

model the tails of the distributions with accuracy, one

may expect the ensemble traces sampled from the em-

pirically modeled distributions to be more reliable. To

scrutinize reliability of MS-EnsPost ensemble predic-

tions, we also examined the reliability diagrams (Brown

and Seo 2010; Jolliffe and Stephenson 2012; Wilks 2006)

andBrier scores (Brier 1950) for awide range of thresholds

[see Alizadeh (2019) for examples]. They indicate that

the MS-EnsPost ensembles are generally as reliable as

the EnsPost ensembles for the 90th percentile or larger

thresholds, but less so for the 50th percentiles or smaller

thresholds. Not surprisingly, Box–Cox transform is not

as effective as normal quantile transform particularly for

low flows. For flood and water supply forecasting, per-

formance for larger flows is much more important than

that for smaller flows. As such, some deterioration in

reliability at lower thresholdsmay not be a large concern

in most applications.

c. Streamflow predictability

The skill in postprocessed ensemble predictions is

bounded by the predictability of streamflow explain-

able by the forcings (Baldwin et al. 2003; Bengtsso and

Hodges 2006; Gebregiorgis and Hossain 2011; Li and

Ding 2011; Simmons et al. 1995), hydrologic and res-

ervoir models (Hou et al. 2009; Mahanama et al. 2012;

Maurer and Lettenmaier 2004; Schlosser and Milly

2002), and statistical assimilation of streamflow via mul-

tiscale regression (Bogner et al. 2016; Sharma et al. 2018)

used. In this section, we assess and characterize the pre-

dictability of streamflow in different hydroclimatological

regions based on the ensemble prediction results pre-

sented above, and attribute the gains by MS-EnsPost

over EnsPost by assessing the predictability through a

skill score (Hou et al. 2009; Westra and Sharma 2010).

Figure 7 shows the CRPSS of theMS-EnsPost ensemble

predictions for all seasons for lead times of 1–32days.

The reference forecast is the sample climatology of

historical observed flow. To assess seasonal variations,

we also examined the wet-versus-dry seasonal results.

They showed that, except for the CBRFC basins, the

CRPSS does not differ much between the two seasons.

As such, we only present the combined results which are

necessarily more reflective of the wet season. For the

CBRFC basins, the CRPSS is significantly lower for the

dry season due to the fact that highly persistent low-flow

conditions may be predicted very well with climatology.

In Fig. 7, the vertical spread in the CRPSS curves rep-

resents the variations in predictability of streamflow

among the different basins within each RFC’s service

area. It is readily seen that the CBRFC basins, all of

which are in theUpper ColoradoRiver basin, exhibit the

smallest variations. The largest variations are observed

with the NWRFC basins which encompass the coastal,

mountain and intermountain regions of the Pacific

Northwest. For each RFC, there are a small number of

basins with conspicuously lower CRPSS. They are gen-

erally associated with regulated flows which increase

hydrologic uncertainty. Because these basins do not rep-

resent natural flows, they are treated separately in the

analysis below.

MS-EnsPost seeks two effects in the CRPSS results:

an increase in the limiting CRPSS, CRPSS(j‘j), from
bias correction at very large lead times and an increase

in CRPSS from multiscale regression at shorter lead

times above CRPSS(j‘j). The first and second attributes

above are referred to herein as the limiting CRPSS and

the hydrologic memory scale (Schlosser andMilly 2002),

respectively. The larger the limiting CRPSS, the more

skillful the bias-corrected ensemble prediction relative

to climatology. The larger the hydrologic memory scale,

the larger the increase in CRPSS due to multiscale re-

gression. The hydrologic memory scale Lhm (days),

which represents the predictability of streamflow due to

the surface and soil water storages in the basin (Kumar

2011), is defined as

L
hm

5

ð‘
0

r
CRPSS

(jtj) dt , (24)

where rCRPSS(jtj) denotes the normalized CRPSS at

lead time t (days). The normalization renders CRPSS

to approach zero at large lead times. One may hence

consider rCRPSS(jtj) as a correlogram with nugget effect

(Norouzi et al. 2018).

Figure 8 shows the resulting pairs of Lhm and

CRPSS(j‘j) for all basins in each RFC as obtained

from the MS-EnsPost and EnsPost predictions. For

each basin, an arrow connects the EnsPost result to the

matching MS-EnsPost result. If MS-EnsPost increases

the limiting CRPSS, the arrow would point upward.
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If MS-EnsPost increases the hydrologic memory

scale, the arrow would point to the right. The longer the

arrow is, the larger the improvement or deterioration is.

Accordingly, lengthy arrows pointing in the upper-right

direction would indicate MS-EnsPost clearly improving

over EnsPost. It is seen that, for a number of basins,

MS-EnsPost improves limiting CRPSS but reduces the

hydrologic memory scale, resulting in arrows pointing

in the upper-left direction. For these basins, the limiting

CRPSS for EnsPost is significantly smaller than that for

MS-EnsPost whereas the CRPSS for day-1 prediction is

as large as or larger than that for MS-EnsPost. In such

a case, EnsPost prediction is likely to yield a larger

hydrologic memory than theMS-EnsPost. Such ‘‘inflated’’

hydrologic memory for EnsPost is an artifact of signifi-

cantly smaller limiting CRPSS and hence, by itself, is not a

very useful indicator of predictive skill. Accordingly, one

may considerMS-EnsPost inferior to EnsPost only if the

arrow is pointing in the lower-left direction.

Figure 8 shows that MS-EnsPost outperforms or per-

forms comparably to EnsPost for all basins, increases lim-

iting CRPSS for almost all basins, and provides significant

FIG. 7. CRPSS of ensemble predictions of daily flow from MS-EnsPost vs lead time. Reference is sample climatology of historical

observed flow.
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additional skill via multiscale regression particularly for the

CBRFC, CNRFC, NCRFC, and NWRFC basins. From

Fig. 8, a number of postulations may also be made. The

significant increase inLhm byMS-EnsPost for theCBRFC,

CNRFC,NCRFC, andNWRFC basins suggests that there

exists significant multiscale hydrologic memory to be

exploited for operational hydrologic forecasting via data

assimilation. The significant increase in CRPSS(j‘j) by
MS-EnsPost for the MBRFC and NERFC basins sug-

gests that there may exist significant room for improving

calibration, hydrologic modeling, and input forcings

to reduce hydrologic uncertainties. The WGRFC basin

results, on the other hand, suggest limited room for im-

proving predictive skill within the existing modeling and

forecasting process, andpoint to improvingmodel physics

as well as soil moisture sensing and its assimilation.

The relative importance of CRPSS(j‘j) versus Lhm in

assessing predictability necessarily varies with the appli-

cation at hand. For long-range predictions, CRPSS(j‘j)
would be more important whereas, for short-range pre-

dictions, Lhm may be just as important. Hence, it is not

readily possible to translate uniquely the two summary

attributes into a single measure. One may consider, how-

ever, the relative positions of the [Lhm, CRPSS(j‘j)] pairs

FIG. 8. Changes in limiting CRPSS and hydrologic memory scale from those of EnsPost to those ofMS-EnsPost (see text for explanation).
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forMS-EnsPost (i.e., the tips of the arrows) within the

x–y plot in Fig. 8, and approximately rank the groups

of basins in different RFCs in terms of the collec-

tive strength of predictability as measured through

MS-EnsPost. The figure indicates that the CBRFC,

CNRFC, NWRFC basins are the most predictable, fol-

lowed by the NERFC, MARFC, and NCRFC basins,

and that the MBRFC and WGRFC basins are the least

predictable. The above order reflects what may be gar-

nered visually from Fig. 7, and generally follows the

decreasing order of the fraction of precipitation as snowfall

fs and mean annual precipitation (see Fig. 1). To illus-

trate, Fig. 9 shows CRPSS(j‘j) versus annual mean

precipitation for basins with fs , 0.3 (Fig. 9a) and Lhm

versus fs for all basins (Fig. 9b). Though the scatters are

large, CRPSS(j‘j) for non-snow-dominated basins re-

lates well with mean annual precipitation except for the

few very wet coastal basins, and Lhm relate positively

with fs for all basins.

5. Conclusions and future research
recommendations

We describe a novel multiscale postprocessor for

ensemble streamflow prediction, MS-EnsPost, and com-

pare with the existing postprocessor, EnsPost, in the

NWS’s HEFS for 139 basins in the service areas of eight

RFCs in the CONUS. MS-EnsPost uses data-driven

correction of magnitude-dependent biases in model-

simulated flow, multiscale regression to utilize observed

and simulated flows over a range of temporal scales

of aggregation, and ensemble generation based on

parsimonious error modeling. Comparative evaluation

of raw and bias-corrected single-valued predictions

and ensemble mean predictions from MS-EnsPost and

EnsPost shows that MS-EnsPost reduces the RMSE of

day-1 to day-7 predictions of daily flow from EnsPost

on average by 28%, and that, for most basins, the im-

provement is due to both bias correction and multiscale

regression.Comparative evaluation of ensemble predictions

from MS-EnsPost and EnsPost shows that MS-EnsPost

reduces the mean CRPS of day-1 to day-7 predictions of

daily flow fromEnsPost on average by 18%, and that the

improvement is due mostly to improved resolution than

reliability. Examination of the CRPSS of ensemble pre-

dictions indicate that, for most basins, the improvement

by MS-EnsPost over EnsPost is due to both magnitude-

dependent bias correction and multiscale regression,

which utilizes hydrologic memory more effectively.

Comparison of the CRPSS with hydroclimatic indices

indicates that the skill in ensemble streamflow predic-

tions from MS-EnsPost is modulated by the fraction of

precipitation as snowfall and, for non-snowfall-driven

basins, mean annual precipitation.

In addition to improving performance, the develop-

ment of MS-EnsPost is motivated for reducing data re-

quirement. Streamflow responses have changed or are

changing significantly in many parts of the world due

to urbanization and climate change (Milly et al. 2008).

Changing conditions force statistical post processors a

difficult trade-off between accounting for nonstationarities

by dividing the period of record or modeling trends, which

would significantly increase sampling uncertainties, versus

keeping sampling uncertainties smaller but at the expense

FIG. 9. (a) Limiting CRPSS vs mean annual precipitation for non-snow-driven basins and (b) hydrologic memory scale vs fraction of

precipitation as snowfall.
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of introducing biases due to nonstationarities. Owing

to the parsimony, one may expect MS-EnsPost to re-

quire significantly less data than EnsPost. We are cur-

rently assessing the data requirement for MS-EnsPost

for possible application under nonstationarity, and the

results will be reported in the near future.
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